Differential Equation and Applications Class 12 Commerce Maths 1 Chapter 8 Exercise 8.5 Answers Maharashtra Board
Balbharati Maharashtra State Board Std 12 Commerce Statistics Part 1 Digest Pdf Chapter 8 Differential Equation and Applications Ex 8.5 Questions and Answers.
Std 12 Maths 1 Exercise 8.5 Solutions Commerce Maths
Solve the following differential equations.
Question 1.
\(\frac{d y}{d x}+y=e^{-x}\)
Solution:
\(\frac{d y}{d x}+y=e^{-x}\) …….(1)
This is the linear differential equation of the form
This is the general solution.
Question 2.
\(\frac{d y}{d x}\) + y = 3
Solution:
\(\frac{d y}{d x}\) + y = 3
This is the linear differential equation of the form
This is the general solution.
Question 3.
x\(\frac{d y}{d x}\) + 2y = x2 . log x.
Solution:
x\(\frac{d y}{d x}\) + 2y = x2 . log x
∴ \(\frac{d y}{d x}+\left(\frac{2}{x}\right) \cdot y=x \cdot \log x\) …….(1)
This is the linear differential equation of the form
This is the general solution.
Question 4.
(x + y)\(\frac{d y}{d x}\) = 1
Solution:
(x + y) \(\frac{d y}{d x}\) = 1
∴ \(\frac{d x}{d y}\) = x + y
∴ \(\frac{d x}{d y}\) – x = y
∴ \(\frac{d x}{d y}\) + (-1) x = y ……(1)
This is the linear differential equation of the form
This is the general solution.
Question 5.
y dx + (x – y2) dy = 0
Solution:
y dx + (x – y2) dy = 0
∴ y dx = -(x – y2) dy
∴ \(\frac{d x}{d y}=-\frac{\left(x-y^{2}\right)}{y}=-\frac{x}{y}+y\)
∴ \(\frac{d x}{d y}+\left(\frac{1}{y}\right) \cdot x=y\) ……(1)
This is the linear differential equation of the form
This is the general solution.
Question 6.
\(\frac{d y}{d x}\) + 2xy = x
Solution:
\(\frac{d y}{d x}\) + 2xy = x ………(1)
This is the linear differential equation of the form
This is the general solution.
Question 7.
(x + a) \(\frac{d y}{d x}\) = -y + a
Solution:
(x + a) \(\frac{d y}{d x}\) + y = a
∴ \(\frac{d y}{d x}+\left(\frac{1}{x+a}\right) y=\frac{a}{x+a}\) ……..(1)
This is the linear differential equation of the form
This is the general solution.
Question 8.
dy + (2y) dx = 8 dx
Solution:
dy + (2y) dx = 8 dx
∴ \(\frac{d y}{d x}\) + 2y = 8 …….(1)
This is the linear differential equation of the form
This is the general solution.
12th Commerce Maths Solution Book Pdf
- 12th Commerce Maths Exercise 8.1 Solutions
- 12th Commerce Maths Exercise 8.2 Solutions
- 12th Commerce Maths Exercise 8.3 Solutions
- 12th Commerce Maths Exercise 8.4 Solutions
- 12th Commerce Maths Exercise 8.5 Solutions
- 12th Commerce Maths Exercise 8.6 Solutions
- 12th Commerce Maths Miscellaneous Exercise 8 Solutions